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UNIQUENESS CONDITIONS FOR CONSTRAINED
THREE-WAY FACTOR DECOMPOSITIONS WITH LINEARLY
DEPENDENT LOADINGS*

ALWIN STEGEMAN! AND ANDRE L. F. DE ALMEIDA}

Abstract. In this paper, we derive uniqueness conditions for a constrained version of the
parallel factor (Parafac) decomposition, also known as canonical decomposition (Candecomp). Can-
decomp/Parafac (CP) decomposes a three-way array into a prespecified number of outer product
arrays. The constraint is that some vectors forming the outer product arrays are linearly dependent
according to a prespecified pattern. This is known as the PARALIND family of models. An impor-
tant subclass is where some vectors forming the outer product arrays are repeated according to a
prespecified pattern. These are known as CONFAC decompositions. We discuss the relation between
PARALIND, CONFAC, and the three-way decompositions CP, Tucker3, and the decomposition in
block terms. We provide both essential uniqueness conditions and partial uniqueness conditions for
PARALIND and CONFAC and discuss the relation with uniqueness of constrained Tucker3 models
and the block decomposition in rank-(L, L,1) terms. Our results are demonstrated by means of
examples.
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1. Introduction. Hitchcock [18, 19] introduced a generalized rank and related
decomposition of a multiway array or tensor. The same decomposition was proposed
independently by Carroll and Chang [7] and Harshman [16] for component analysis
of three-way data arrays. They named it Candecomp and Parafac, respectively. We
denote the Candecomp/Parafac (CP) model, i.e., the decomposition with a residual
term, as

R
(11) X:Z(arobrocr)"_ﬁa

r=1

where X is a three-way array of size I x J x K, o denotes the outer product, and
a,, b,, and c,, are vectors of size I x 1, J x 1, and K x 1, respectively. To find the
latter vectors, an iterative algorithm is used which minimizes the Frobenius norm of
the residual array E. For an overview and comparison of CP algorithms, see Hopke
et al. [20] and Tomasi and Bro [44].

The rank of a three-way array X is defined in the usual way, i.e., the smallest
number of rank-1 arrays whose sum equals X. A three-way array has rank 1 if it is
the outer product of three vectors, i.e., ao b oc. It follows that the CP model tries
to find a best rank-R approximation to the three-way array X.
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1470 ALWIN STEGEMAN AND ANDRE L. F. DE ALMEIDA

The real-valued CP model, i.e., where X and the model parameters are real-
valued, was introduced in psychometrics (Carroll and Chang [7]) and phonetics
(Harshman [16]). Later on, it was also applied in chemometrics and food industry
(see Bro [4] and Smilde, Bro, and Geladi [32]). For other applications of CP in Psy-
chometrics, see Kroonenberg [25]. Complex-valued applications of CP occur in signal
processing, especially wireless telecommunications; see Sidiropoulos, Giannakis, and
Bro [31]; Sidiropoulos, Bro, and Giannakis [28]; and De Lathauwer and Castaing [13].
Also, CP describes the basic structure of fourth-order cumulants of multivariate data
on which a lot of algebraic methods for independent component analysis are based
(Comon [8]; De Lathauwer, De Moor, and Vandewalle [9]; and Hyvérinen, Karhunen,
and Oja [21]). In this paper, we consider the real-valued CP model. All occurrences
of three-way rank are assumed to be over the real field.

For later use, we mention that the CP model (1.1) is a special case of the Tucker3
model of Tucker [45]. The latter model is defined as

Q
Zzgf’pq (arobyocy) +E.

1p=1g=1

(1.2) X =

R
r=

Clearly, the case with R = P = Q and grpq = 0 if (r,p, q) # (r,7,7) yields (1.1). The
R x P x Q array G with entries g,p, is referred to as the core array. The matrices
[a1]...|ag], [b1]...|bp], and [c1]...|cq] are called the component matrices.

A matrix notation of the CP model (1.1) is as follows. Let X (I x J) and Ej
(I x J) denote the kth frontal slice of X and E, respectively. Then (1.1) can be written
as

(1.3) X, =AC,BT +E;, k=1,...,K,

where the component matrices A (I x R) and B (J x R) have the vectors a, and b,. as
columns, respectively, and Cy, (R x R) is the diagonal matrix with the kth elements
of the vectors c, on its diagonal. The model part of the CP model is characterized by
(A, B, C), where the component matrix C (K x R) has the vectors ¢, as columns.

The most attractive feature of CP is its uniqueness property. Kruskal [26] has
shown that, for fixed residuals E, the vectors a,., b,., and ¢, are unique up to rescal-
ing/counterscaling within each triplet (a,, b,, ¢,) and a permutation of the order of
the triplets if

(1.4) ka+ ks + ke >2R+2,

where ka, kB, kc denote the k-ranks of the component matrices. The k-rank of a
matrix is the largest number z such that every subset of z columns of the matrix
is linearly independent. If a CP solution is unique up to these indeterminacies, it
is called essentially unique. Two CP solutions that are identical up to the essential
uniqueness indeterminacies will be called equivalent. A more accessible proof of the
uniqueness condition (1.4) can be found in Stegeman and Sidiropoulos [38].

For the case where one of the component matrices A, B, and C has full column
rank (i.e., rank equal to the number of columns R), a more relaxed uniqueness con-
dition than (1.4) has been derived by Jiang and Sidiropoulos [22] and De Lathauwer
[10]. See also Stegeman, Ten Berge, and De Lathauwer [37]. Stegeman [36] shows
that this condition is implied by (1.4).

In this paper, we consider a constrained version of the CP decomposition in
which the columns of A, B, and C are linearly dependent according to a prespecified
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UNIQUESNESS CONDITIONS FOR CONFAC AND PARALIND 1471

pattern. This type of model is introduced in Bro et al. [6] and previous versions of [6],
and is named PARALIND (PARAllel profiles with LINear Dependencies). Instead of
(A, B, C), a PARALIND decomposition is characterized by (A%, B®, CQ), where A
isIxXxR,BisJx Ry, Cis K X R3, Pis Ry X R, ® is Ry x R, and Q is R3 x R.
The prespecified matrices ¥, ®, and €2 contain the patterns of linear dependency of
the columns of A, B, and C, respectively. We refer to ¥, ®, and 2 as the constraint
matrices.

In nearly all applications of PARALIND decompositions, the linear dependencies
take the form of identical columns. Hence, the columns of A, B, and C may be re-
peated more than once in the triplets (a,, b, c,) according to a prespecified pattern.
The patterns of repetition are given by the constraint matrices ¥, ®, and €2, which
contain (possibly identical) unit vectors as columns. The constraint matrices are as-
sumed to have full row rank, which implies R > max(R;, R, R3). This assumption
guarantees that each column of A, B, and C appears at least once in the decompo-
sition. In de Almeida, Favier, and Mota [3], this type of decomposition is introduced
as CONFAC (CONstrained FACtors).

For given PARALIND or CONFAC constraint matrices, an alternating least
squares (ALS) algorithm for finding the component matrices A, B, and C that min-
imize the Frobenius norm of the residual array has been proposed in Bro et al. [6]
and de Almeida, Favier, and Mota [3]. However, analogous to the ALS algorithm for
the CP decomposition, it may terminate in a local minimum instead of the global
minimum. This fallacy may be overcome by running the algorithm several times with
random starting points. A more severe problem that PARALIND and CONFAC may
share with CP is nonexistence of an optimal solution (A, B, C). For CP this problem
results in so-called “degenerate solutions”; see Stegeman [33, 34, 35]; Krijnen, Dijk-
stra, and Stegeman [24]; De Silva and Lim [15]; and Stegeman and De Lathauwer [39].
However, in the study of uniqueness of a given PARALIND or CONFAC solution this
potential problem does not play a role.

In what follows, we use the name CONFAC for decompositions in which the
constraint matrices have unit vectors as columns, and we use the name PARALIND
for decompositions in which the constraint matrices (are allowed to) have more general
forms.

As an example of CONFAC, let R =4, Ry = R =2, R3 = 3, and

1 010
(1.5) \szﬁz[(l)(l)(l)(l)], Q=01 0 0
0 0 01
We have A¥ = [a; a; as az], B® = [b; by bs by], and CQ = [c; ¢z ¢ c3]. The
CONFAC model, i.e., the decomposition plus the residual term, is then given by

(16) XZ (al Obl OC1)+(a10b1 oc2)—|—(a20b20c1)+(agonOC3)+E.

In Bro et al. [6], CONFAC and PARALIND decompositions are used to analyze
flow injection data and fluorescence data. In [3], de Almeida, Favier, and Mota
exploited the CONFAC structure to design multiple-antenna transmissions in the
context of wireless telecommunications and signal processing. It is shown that the
three constraint matrices ¥, ®, and €2 are design parameters of the transmission
system. By varying their patterns of zeros and ones, it is possible to adjust the model
parameters, thus providing some flexibility to the design of the system. From a signal
processing and modeling viewpoint, the CONFAC approach of [3] generalizes several
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1472 ALWIN STEGEMAN AND ANDRE L. F. DE ALMEIDA

related works [30, 29, 14, 1, 2], where the interactions between different factors are
either absent, as in [29], or fixed to a prescribed interaction pattern, as in [30, 14, 1, 2].

In this paper, we derive uniqueness conditions for one of the component matrices
A, B, and C of a PARALIND or CONFAC decomposition, for given constraint ma-
trices ¥, ®, and 2. Our results are obtained by applying the approach of Jiang and
Sidiropoulos [22] for CP uniqueness to PARALIND. Like [22], we prove an essential
uniqueness condition for one component matrix by using the permutation lemma of
Kruskal [26]. Moreover, we extend this result by proving a partial uniqueness condi-
tion for one component matrix. For this, we use the equivalence lemma for partitioned
matrices proven by De Lathauwer [11].

In the signal processing applications of the CONFAC decomposition cited above,
the uniqueness of one particular component matrix (the one containing an estimate
of the transmitted information signal in the telecom system) is most important. This
shows that, although our uniqueness results are formulated for a single component
matrix, they have immediate practical implications.

The paper is organized as follows. In section 2, we discuss the relations between
PARALIND, CONFAC, and other three-way decompositions such as CP, Tucker3,
and block decompositions. In section 3, we discuss and define essential and partial
uniqueness of the component matrices. In sections 4 and 6, we present our essential
and partial PARALIND uniqueness results, respectively. Sections 5 and 7 illustrate
our uniqueness results by means of various examples. In section 8, we discuss the
relation between our approach and uniqueness of Tucker3 models with a constrained
core array. PARALIND can be written into the latter form, as will be seen in section 2.
In section 9, we consider uniqueness for the block decomposition in rank-(L, L, 1)
terms, which is a special case of CONFAC. Finally, section 10 contains a discussion
of our findings.

2. CONFAC, PARALIND, and other three-way decompositions. Here,
we discuss the relations between CONFAC, PARALIND, and other three-way decom-
positions. First, we observe that if ¥ = & = Q = Ig, then the decomposition is
identical to CP. But there are more cases where this is true. These are formulated in
the following lemma.

LEMMA 2.1. Consider a CONFAC model with R1 = Ry = R3 and ¥ =11, ® =
I1, Q, with II; and Ily permutation matrices. Then the CONFAC model can be
written in the following CP form:

Ry
(2.1) X = an (ar obr ()0 Cryr)) + E,

r=1

where n,. denotes the row sum of row r of ¥, and 71(-) and m2(-) are the row permu-
tations of ® and 2 corresponding to Iy and Ils, respectively.

Proof. The component matrices all have the same number of columns, since
Ry = Ry = R3. The condition ¥ = II; & = Il 2 implies that each triplet of vectors
forming a rank-1 array in the decomposition does not share a vector with another
triplet. Moreover, the triplet containing a, is repeated as often as the number of
times a, appears in AW, which is equal to the row sum of row r of ¥. Hence, there
are R; triplets and triplet r is repeated n, times. This completes the proof. O
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UNIQUESNESS CONDITIONS FOR CONFAC AND PARALIND 1473

Note that Lemma 2.1 does not cover all cases where CONFAC reduces to CP. For
example, let Ry =3, Ro = R3 =2, R=3, ¥ =13, and

1 10
o) onc[i 0]
Then the CONFAC model is given by

X:(alOb10C1)+(a20b1001)+(a30b20C2)+E

(2.3) = ((a; +az2)objocy)+ (agobyoce) + E,

where the latter has the form of the CP model (1.1) with R = 2.

Next, we discuss the relation between PARALIND, CONFAC, and the Tucker3
model (1.2). De Almeida, Favier, and Mota [3] show that a PARALIND model can
be written as a Tucker3 model with Ry X Re X R3 core array

R
(2.4) G=) (¥, 09, 0w),
r=1

where 1,., ¢,., and w, are the rth columns of ¥, ®, and €2, respectively. Hence, the
core array G satisfies a CP decomposition with component matrices ¥, ®, and 2. For
a CONFAC decomposition, it can be seen that G contains at most R nonzero entries.
Hence, CONFAC is equivalent to a Tucker3 model in which the constrained core array
has a fixed pattern of zeros and integer-valued nonzeros. If g,,q = n, then the triplet
(ar, by, ¢4) is contained n times in the decomposition. Constrained Tucker3 models
have applications in chemometrics; see Smilde, Bro, and Geladi [32].

There also exist three-way decompositions that are hybrid forms of CP and
Tucker3. Some of these may also be written in PARALIND or CONFAC form. This
derivation is beyond the scope of this paper, however. We refer to Harshman and
Lundy [17] and Bro [5] for an overview of these hybrid models.

A third decomposition related to PARALIND and CONFAC is the decomposition
in block terms, introduced by De Lathauwer [12]. Before we discuss this decomposi-
tion, we need to introduce some notions. A mode-n vector of an I; x Is X I3 array is an
I, x 1 vector obtained from the array by varying the nth index and keeping the other
indices fixed. The mode-n rank is defined as the dimension of the subspace spanned
by the mode-n vectors of the array. When a three-way array has mode-1 rank L,
mode-2 rank M, and mode-3 rank N, it is said to be rank-(L, M, N). The mode-n
rank generalizes the row and column rank of matrices. Note that a rank-(1,1,1) array
has rank 1 and vice versa.

The decomposition in block terms of [12] is a generalization of CP in which the
array is not decomposed into rank-1 arrays but into rank-(L, M, N) arrays, where we
denote the number of terms as F. Term f in the decomposition can be written in
Tucker3 form with an L x M x N core array G that is rank-(L, M, N) and matrices
Ay (IxL),By (JxM),and Cy¢ (K x N) that have full column rank.
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1474 ALWIN STEGEMAN AND ANDRE L. F. DE ALMEIDA

De Lathauwer [12] discusses the decomposition in rank-(L, L, 1) terms as a special
case. By absorbing the L x L x 1 core arrays GY) into Ay, it can be written as

X (AfBJ:)OCf‘FE

L
<Z b(f) )OCf—FE

=1

I
M- M- T

L
> (ai” obi” oc) +E,
=1

(2.5)

-
I
=

where al(f ) and bl(f ) are the Ith columns of A ¢ and By, respectively. It can be
seen that (2.5) is the CONFAC model with A = [A4|...|Ap], B = [B1]...|Br],
C=lc; ... cp|, ¥ =® =1I,p, and @ =Ir ® 1T, where 1, is an L x 1 vectors of
ones, and ® denotes the Kronecker product.

The relation between PARALIND, CONFAC, and the general decomposition in
rank-(L, M, N) terms is more complicated. In order to obtain a PARALIND or CON-
FAC form, each core array G must be transformed by nonsingular transformations
into some canonical form. The inverses of the transformations can be absorbed into
Ay, By, and C;. Whether the resulting decomposition obeys the PARALIND or
CONFAC structure depends on the canonical forms of the core arrays. This can be
illustrated by considering the case L = M = N = 2, for which the canonical forms are
given by De Silva and Lim [15]. Hence, the core arrays are 2 x 2 x 2 and rank-(2,2,2).
Each core array satisfies one of the following: it is generic and has rank 2, it is generic
and has rank 3, or it is degenerate and has rank 3. If the core array G s degenerate
and has rank 3, then it can be transformed to a canonical form such that term f of
the decomposition is

(2.6) (agf) o bgf) o cgf)) + (aéf) o béf) o cgf)) + (agf) o béf) o céf)) '

It can be checked that this term has the CONFAC structure. If the core array G
is generic and has rank 2, then it can be transformed to a diagonal canonical form
such that term f of the decomposition is (agf) o b:(Lf) o cgf)) + (aéf) o béf) o cgf)). This
is of CP form and, hence, of CONFAC form. If the core array G s generic and
has rank 3, then it can be transformed to a canonical form such that term f of the
decomposition is

27) @7 ob® o)+ (@l o b{ 0 )+ (al) o bY 0 ) — (al) 0 b 0 ).

This term is of PARALIND form but does not have CONFAC structure. We conjec-
ture that G cannot be transformed to a canonical form such that term f of the
decomposition is of CONFAC form. Since term f of the decomposition only involves
columns from Ay, By, and Cy, the complete decomposition can be written in CON-
FAC form when the core arrays are either degenerate and have rank 3, or generic and
have rank 2.
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3. Essential and partial uniqueness in PARALIND. Before we present our
uniqueness results for the component matrices in PARALIND, we discuss the meaning
of essential and partial uniqueness in PARALIND. Recall that essential uniqueness in
CP holds when the triplets (a,, b, ¢,) are unique up to scaling/counterscaling within
each triplet, and a permutation of the order of the triplets. More formally, if we have
an essentially unique CP solution (A,B,C) and an alternative solution (A,B,C)
with the same residuals, then A = AIIA,, B=BIIA;, and C = CII A, where IT
is a permutation matrix and A,, Ay, and A. are nonsingular diagonal matrices such
that Ag Ay A. =1R.

In PARALIND, there is less freedom of scaling/counterscaling within the triplets
without affecting the residuals, due to the linear dependence of the vectors in the
triplets (ar,byp,cq). Also, permuting the order of the triplets may not be possi-
ble without affecting the residuals. The PARALIND solutions (A¥,B®, CQ) and
(AWII, B®II, CQII) do have the same residuals for a permutation matrix IT, but
the latter solution features constraint matrices that may differ from those in the for-
mer solution. Note that we consider a PARALIND solution as a triplet of component
matrices corresponding to a fixed triplet of constraint matrices.

To avoid these complications, we define essential uniqueness for one component
matrix instead of all three of them together. In particular, we define the following.

DEFINITION 3.1. Let (A¥,B®,CQ) be a PARALIND solution for fizved con-
straint matrices ¥, ®, and Q. If any alternative PARALIND solution (A¥, B®, CQ)
with the same residuals satisfies A = ATL A for some permutation matriz II and some
nonsingular diagonal matriz A, then we call A essentially unique.

Note that if A is essentially unique, then AII is also essentially unique for any
permutation matrix IT. Hence, the essential uniqueness of the PARALIND compo-
nent matrices is invariant under row permutations of the constraint matrices ¥, ®,
and €.

Next, we discuss the concept of partial uniqueness. For CP, this term has been
used to describe cases where some columns of a component matrix are identified up
to their linear span only, or where only a finite number of alternative CP solutions
are available (up to CP essential uniqueness); see Ten Berge [42]. For PARALIND,
we adopt the first definition, and we call A partially unique if its columns can be
partitioned into disjoint subsets and each subset is identified up to its linear span.
This is in line with the discussion on partial uniqueness in PARALIND by Bro et al. [6].

DEFINITION 3.2. Let (A¥,B®,CQ) be a PARALIND solution for fized con-
straint matrices ¥, ®, and Q. Let the columns of A be partitioned into disjoint
subsets as AT, = [Aq1]...|AF], where I1, is a permutation matriz. Suppose that,
for any alternative PARALIND solution (AW, B®, CQ) with the same residuals and
with A partitioned as ATL, = [A4|...|AF], it holds that AT, = ATI, II A, where
II is a unique block-permutation matriz, A is a unique nonsingular block-diagonal
matriz, and the block-transformation II A is compatible with the partition of ATI,
and ATI,. Then we call A partially unique.

Definition 3.2 states that each subset of columns of A TI, satisfies Aj = Ay S,
where S is a unique nonsingular matrix and the permutation 7 (-) is defined by the
unique block-permutation II. Hence, each subset Ay is identified up to its linear
span. Note that when checking partial uniqueness of A one is free to choose a suitable
column permutation IT, and partition of A Il,.

For the block decomposition in rank-(L, M, N) terms, De Lathauwer [12] defines
“essential uniqueness” as the case where the blocks A ¢, By, and C; in the component
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1476 ALWIN STEGEMAN AND ANDRE L. F. DE ALMEIDA

matrices A = [A4]...]AFr], B=[B4|...|Bp], C = [Cy]...|CF] are identified up to
their linear spans and a simultaneous permutation of the F' blocks.

Next, we present an identifiability condition for the PARALIND component ma-
trices due to de Almeida, Favier, and Mota [3]. Let the three matricized forms of the
PARALIND core array (2.4) be

(31) G=(20Q)v’, G, = (Qo¥)dT, G;=(Pod)Q’,

where © denotes the Khatri—-Rao product, i.e., the columnwise Kronecker product.
PROPOSITION 3.3. Let (A¥,B®,CQ) be a PARALIND solution for fized con-
straint matrices ¥, ®, and Q. Let (A¥,B®,CQ) be an alternative PARALIND
solution with the same residuals.
(i) If A and (B ® C)G1 have full column rank, then A = A'S for some nonsin-
gular matriz S.
(i) If B and (C® A)Gy have full column rank, then B = BT for some nonsin-
gular matriz T.
(iii) If C and (A ® B)G3 have full column rank, then C = C U for some nonsin-
gular matriz U.
Proof. We prove only (i). The proofs of (ii) and (iii) follow analogously by
interchanging the roles of (A, ¥), (B, ®), and (C, ).
The structural part of the JK x I matrix unfolding of the PARALIND model can
be written as

(3.2) (B®) o (CN)) (A¥)! = (B C)G;, AT.
Equating the structural parts of the two PARALIND solutions, we obtain
(3.3) B®C)G AT =B®C)G,A”.

Since (B ® C) G; has full column rank, it follows that the columns of A lie in the
column space of A, i.e., A = A S for some square matrix S. Moreover, since A has full
column rank, this implies that A also has full column rank. Hence, S is nonsingular
and A = A S™!. This completes the proof of (i). O

Note that, in (i) of Proposition 3.3, the matrix (B ® C)Gy has full column rank
if B, C, and G; have full column rank. Hence, all component matrices are identified
up to their linear span if all of A, B, C, G1, G2, and G3 have full column rank.

We conclude this section with an invariance result of essential and partial unique-
ness, which is useful when checking uniqueness. The result is an adaptation of Ten
Berge and Sidiropoulos [40, p. 401].

LEMMA 3.4. Let (AP, B®,CQ) be a PARALIND solution for fixed constraint
matrices ¥, ®, and . If A and (B ® C)G;1 have full column rank, then A is
essentially/partially unique if and only if Ig, is essentially/partially unique in the
PARALIND solution (Ir, ¥,B®,CS).

Proof. The uniqueness properties of A are the same for SA, where S is nonsin-
gular. Consider S with SA = [Igl ], where O denotes an all-zero matrix. The all-zero
rows of SA do not affect the uniqueness properties of SA. Indeed, let (Ig, ¥, B®, C)
have an alternative (F¥, B®, CQ). Then, as in (3.3),

(3.4) (B®C)G Iz, = (B®C)G, F'.

Full column rank of (B ® C) G; implies that (B ® C) G also has full column rank.
Hence,

(3.5) (B®C) G, [Iz, O] = (B®C)G, AT
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implies that the last I — Ry rows of A are all-zero. This shows that the uniqueness
properties of SA solely depend on its nonzero rows. O

4. Essential uniqueness results for PARALIND. Here, we discuss and
prove essential uniqueness conditions for PARALIND. Since PARALIND is a Tucker3
model with constrained core array (2.4), studying PARALIND uniqueness is analo-
gous to studying uniqueness of Tucker3 models with a constrained core array. Suppose
we work under the conditions of Proposition 3.3 and A, B, and C are identified up
to their linear spans. Equating the JK x I matricized form of the structural part of
the PARALIND model for the original and alternative solutions (see (3.3)) yields

(4.1) B®C)GIAT=B®C)(ToU)G,;STAT.
Since A, B, and C have full column rank, this is equivalent to
(4.2) G, =(T®U)G,S”.

Equation (4.2) states that the PARALIND core array (2.4) must be invariant under
the transformations S, T, and U that are applied “on its three sides.” If (4.2) implies
that S is a rescaled permutation matrix, then A is essentially unique. This method of
proving essential uniqueness depends on the structure of G; and can be relatively easy
or rather complicated; compare, e.g., Ten Berge and Smilde [41]; Ten Berge [43]; and
Kiers, Ten Berge, and Rocci [23]. Below, we present a unified approach to essential
uniqueness in PARALIND that yields an identical sufficient uniqueness condition
for each triplet of constraint matrices (¥, ®,Q). By using Kruskal’s permutation
lemma [26], the uniqueness of one component matrix can be obtained separate from
the other two component matrices. A more detailed comparison between our approach
and uniqueness results for constrained Tucker3 models is contained in section 8.

Our PARALIND essential uniqueness condition is featured in section 4.1. In
section 4.2 we discuss necessary uniqueness conditions for CONFAC and PARALIND.

4.1. An essential uniqueness condition for PARALIND. Here, we present
our essential uniqueness condition for one component matrix in PARALIND. Without
loss of generality, we focus on the essential uniqueness of A. To prove our uniqueness
condition, we use the approach of Jiang and Sidiropoulos [22] for CP uniqueness.
Like the latter authors, we make use of Kruskal’s permutation lemma [26], which
is the cornerstone of the proof of Kruskal’s uniqueness condition (1.4) for CP. The
permutation lemma is formulated as follows. Let w(:) denote the number of nonzero
elements of a vector.

LEMMA 4.1 (permutation lemma). Let A and A be two I x Ry matrices and let
ka > 2. Suppose the following condition holds: for any vector x such that w(ATx) <
Ry —rank(A)+1, we have w(ATx) < w(ATx). Then there exists a unique permutation
matriz II and a unique nonsingular diagonal matriz A such that A = ATIA.

Our essential uniqueness condition for PARALIND is given in Theorem 4.2 below.
Let

(4.3) N*= max (rank@ diag(yp” )QT)) ,

j=1,....,R1

where ’I/J? denotes row j of . Hence, N* is the maximum of the ranks of the R;
horizontal slices of the core array in (2.4).
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THEOREM 4.2. Let (AW, B®,CQ) be a PARALIND solution for fized constraint
matrices ¥, ®, and Q. Let (A¥, B®, CQ) be an alternative PARALIND solution
with the same residuals. Suppose (B® C)G1 and A have full column rank. If for any
vector d,

(4.4) rank(B® diag(®¥7d) QTCT) < N*  implies  w(d) <1,

then there exists a unique permutation matriz I1 and a unique nonsingular diagonal
matriz A such that A = ATIA.

Proof. The result follows if we show that the conditions of the theorem imply
the condition of the permutation lemma: for any vector x such that w(ATx) < Ry —
rank(A)+1, we have w(ATx) < w(ATx). As in the proof of (i) of Proposition 3.3, the
conditions of Theorem 4.2 imply that A has full column rank. Hence, the condition
of the permutation lemma becomes: for any vector x such that w(A7x) < 1, we have
w(ATx) < w(ATx). For any x, we have

(4.5) (B®C)G; ATx = (B®C)G; ATx.

Suppose w(ATx) = 0. Then the right-hand side of (4.5) equals the all-zero vector.
Since (B ® C) G1 has full column rank, it follows that ATx is also all-zero. Hence,
w(ATx) = 0 implies w(ATx) = 0.

It remains to show that w(ATx) = 1 implies w(ATx) < 1. Rewriting (4.5) in
J x K matrix form, we obtain

(4.6) B® diag(¥T ATx) QTCT = B® diag(¥TATx) QTCT .

Suppose w(ATx) = 1. Then ¥TATx is a nonzero scalar multiple of one row of W.
From (4.6), it follows that

rank(B® diag(¥7 ATx) QT CT) = rank(B® diag(¥TATx) Q7 CT)
< rank(® diag(¥TATx) Q7)

< . T T
<, (ronk(@ding() 21)

(4.7) = N*.

Let d = ATx. If (4.7) implies w(d) < 1, then the condition of the permutation lemma
holds. The proof is complete by observing that this is exactly condition (4.4). d

When PARALIND reduces to CP, we have N* =1 and ¥ = & = Q = I, where
we may have to permute the columns of B and C to obtain the latter identity (see
Lemma 2.1). In this case, condition (4.4) is identical to Condition B of Jiang and
Sidiropoulos [22] for the essential uniqueness of a CP component matrix of full column
rank.

Condition (4.4) can be difficult to check. However, when B or C have full column
rank, they can be eliminated from the expression rank(B® diag(¥7d) QT CT). If
both B and C have full column rank, then condition (4.4) reduces to (4.8), which is
easier to check. This is illustrated by the examples in section 5. Also, (B ® C)G;
has full column rank if and only if G; has full column rank. This yields the following
corollary.
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COROLLARY 4.3. Let (A¥,B®,CQ) be a PARALIND solution for fized con-
straint matrices ¥, ®, and Q. Let (A¥,B®,CQ) be an alternative PARALIND
solution with the same residuals. Suppose A, B, C, and Gy have full column rank.
If for any vector d,

(4.8) rank(® diag(®7d) Q7) < N* implies w(d) <1,

then there exists a unique permutation matriz I and a unique nonsingular diagonal
matriz A such that A = ATIA.

Note that when we use the permutation lemma to show that S in (4.2) is equal
to I, up to column scaling and permutation, then we obtain exactly condition (4.8)
since T and U in (4.2) are nonsingular.

To check the uniqueness condition (4.8) requires solving a system of equations in
the elements of the vector d. In a special case, the following lemma states a condition
that does not involve the vector d.

LEMMA 4.4. Let A, B, C, and Gy have full column rank. If ¥ = Iy, then
condition (4.8) holds if and only if ® and @ are R X R permutation matrices, i.e., if
and only if we have the CP model (see Lemma 2.1).

Proof. Let ¥ = Ip. It can be verified that N* = 1. Also, we have ® diag(¥7d)Q”
= & diag(d) Q7. First, we show that condition (4.8) does not hold if & and Q are
not both R x R permutation matrices. Each element of d is contained in exactly one
row of ® diag(d), and some row of ® diag(d) contains more than one d; if ® is not
a permutation matrix. In that case, it is possible to set all d; equal to zero except
those in a row containing multiple d;. Then ® diag(d) has rank 1 while w(d) > 2.
Hence, condition (4.8) does not hold. Analogously, it can be shown that if € is not
a permutation matrix, then there exists a d such that diag(d) 27 has rank 1 while
w(d) > 2.

It remains to show that condition (4.8) holds if ® and €2 are R x R permutation
matrices. But then rank(® diag(d) 27) = rank(diag(d)) = w(d), which completes
the proof. O

4.2. Necessary uniqueness conditions for CONFAC and PARALIND.
In addition to sufficient conditions for essential uniqueness in PARALIND, we also
consider necessary uniqueness conditions. The lemma below follows from a necessary
condition for CP essential uniqueness (see Stegeman and Sidiropoulos [38, p. 543]).

LEMMA 4.5. Let (AP, B®,CQ) be a PARALIND solution for fixed constraint
matrices ¥, ®, and Q. If (B® C) Gy does not have full column rank, then A is not
essentially unique. Moreover, an alternative PARALIND solution exists in which A
has Ry — 1 columns.

Proof. Suppose (B ® C) Gy does not have full column rank. Let n be such that
(B®C)Gin=0. Then

(4.9) (B2 C)G, AT = (B®C) G, (A +ynT)T

for any vector y. Hence, an alternative decomposition exists with (A + yn”) instead
of A. Moreover, we can choose y such that one column of (A +yn?) becomes all-zero.
This completes the proof. ad

Another necessary condition for CP essential uniqueness is that none of the
component matrices may have all-zero or proportional columns (see Stegeman and
Sidiropoulos [38, p. 543]). For CONFAC we have a similar condition: if, for some
(s,t), columns s and ¢t of ¥ are identical and columns s and ¢ are unique in ® and
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2, then B and C are not unique. In the lemma below, a more general form of this
condition is proven.

LEMMA 4.6. Let (A¥,B®,CQ) be a CONFAC solution for fixed constraint
matrices ¥, ®, and Q. Suppose, for some column index set S C {1,..., R} with at
least two elements, columns S of ¥ are identical and columns S of ® and © do not
repeat in columns {1,..., R}\S of ® and Q. If columns S of ® and Q are not all
identical, then B and C are not essentially unique.

Proof. For simplicity, let columns S of ¥ be equal to the first column of Ig,.
We denote the columns S of ® and Q by ®s and g, respectively. Let the unique
columns of B and C in B®s and CQs be given by Bs (J X ng) and Cs (K x n3),
respectively. Then the CONFAC decomposition is

(4.10) a; o B®s (CNs)T + (rest),

where (rest) does not include the columns Bs and Cgs of B and C, respectively. The
number of rank-1 terms in the first part of (4.10) equals card(S). We have

(4.11) B®s (CQs)! =BsV CEL,

with 'V being an ny x ns matrix. Let m = min(ng, ng). The condition of the lemma
implies that max(ng,ng) > 2. For any matrices T (ng x m) and U (n3 x m) with
V = TU7, an alternative decomposition is

(4.12) a; o BsT (CsU)T + (rest).

The number of rank-1 terms in the first part of (4.12) equals m. Hence, we have
shown that B and C are not essentially unique. This completes the proof. d

Note that, in order to obtain conditions for essential uniqueness of B and C,
it suffices to interchange the roles of (A, W), (B,®), and (C,€) in Theorem 4.2,
Corollary 4.3, and Lemmas 4.5 and 4.6.

5. Examples. In this section, we present two examples to demonstrate the con-
dition (4.8) of Corollary 4.3 for essential uniqueness. In all examples it is implicitly
assumed that A, B, and C have full column rank. The first example is Example 2
in de Almeida, Favier, and Mota [3]. Here, we have a CONFAC model with R = 4,
R1=R2=3, R3:2,and
(5.1)

1100 010
=00 0 1], 100,9:{(:;(1)(1)(1)}.
0 010 0 0 01
Using our results in section 4, we show that C is essentially unique. It can be verified
that Gs has full column rank. We have

00 1 000
(5.2) @diagwHeT=|2 0 0|, @dagwHe'=|0 0 0],
000 010

where w;‘»r denotes row j of Q. Hence, N* = 2 follows from its definition (4.3) with
¥ and €2 interchanged. Next, we check condition (4.8) translated to C. For a vector
d = (d; d2)T, we obtain

0 0 d
(5.3) ® diag(QTd)®T = | 2, 0 0
0 do O
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If the matrix in (5.3) is to have rank at most 2, it follows that dids = 0. Hence, the
condition (4.8) translated to C holds and C is essentially unique.
It follows from (5.1) that the CONFAC decomposition is given by

(54) alobgocl—I—alobgocl—I—agobloc1+agob3oc2.
An alternative decomposition is
(55) (al +a3)ob1 O Cp —|—alO(2b2—b1)001—|—320b30C2.

This shows that A and B are not essentially unique.
The second example is taken from Bro et al. [6, section 3.2.5]. Here, we have a
PARALIND model with R =6, Ry =3, Ry =6, R3 =4, & =1, and

AR

56) w=|001100|, Q=
000 011 00 0 0 1 -1
01 0 1 0 1

Using Corollary 4.3, we show that A is essentially unique. It can be verified that G,
has full column rank and that N* = 2. Next, we check condition (4.8). For a vector
d= (dl dQ dg)T, we obtain

dy 0 0 0

—dy 0 0 dy

. T T _ 0 do 0 0

(5.7) ® diag(T'd) Q" = 0 —dy 0 d
0 0 ds 0

0 0 —d3 ds

If the matrix in (5.7) is to have rank at most 2, it follows that w(d) < 1. Hence,
condition (4.8) holds and A is essentially unique. This is not proven in [6].

6. A partial uniqueness condition for PARALIND. Here, we present a
partial uniqueness condition for one component matrix in PARALIND. Without loss of
generality, we focus on the partial uniqueness of A. We obtain our partial uniqueness
condition by applying the approach of Jiang and Sidiropoulos [22] to the PARALIND
decomposition in which the columns of A are partitioned into disjoint subsets. The
structure of our proof is analogous to the proof of the essential uniqueness condition
in Theorem 4.2. Instead of Kruskal’s permutation lemma [26], we make use of the
equivalence lemma for partitioned matrices that was proven by De Lathauwer [11].
This lemma is used by De Lathauwer [12] to prove partial uniqueness results of the
partitioned component matrices of the decomposition in rank-(L, M, N) terms. The
equivalence lemma for partitioned matrices is formulated as follows. For a vector y
partitioned as y = (y7|...|y%)7T, let w/(y) denote the number of parts of the vector
that are not all-zero. For a matrix A partitioned as A = [A4]...|AF], let k/y denote
the maximal number f such that any set of f submatrices of A has full column rank.
Note that this generalizes the concept of k-rank to partitioned matrices.

LEMMA 6.1 (equivalence lemma for partitioned matrices). Let A and A be
two I x Ry matrices partitioned in the same way into F submatrices that are of
full column rank. Suppose the following condition holds: for any vector x such that
W'(ATx) < F — Ky + 1, we have w'(ATx) < w'(ATx). Then there exists a unique
block-permutation matriz I and a unique nonsingular block-diagonal matriz A such

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1482 ALWIN STEGEMAN AND ANDRE L. F. DE ALMEIDA

that A = ATI A, where the block-transformation is compatible with the partition of
A and A.

Note that Lemma 6.1 is not a straightforward generalization of the permutation
lemma (Lemma 4.1). The condition of Lemma 4.1 features w(ATx) < Ry —rank(A)+
1, while in Lemma 6.1 this becomes w’(ATx) < F — ks +1. Hence, the rank of A has
been replaced by the k’-rank of A. It can be shown by an example that Lemma 6.1
with an r’-rank of A is incorrect.

Our partial uniqueness condition for PARALIND is the following theorem.

THEOREM 6.2. Let (A¥,B®,CQ) be a PARALIND solution for fizved constraint
matrices ¥, ®, and Q. Let (AW, B®, CQ) be an alternative PARALIND solution
with the same residuals. Let the columns of A be partitioned as ATl, = [A41]...|AFp],
where I, is a permutation matriz. Define the partition of A analogously as ATI, =
[A1| e |AF] Let
(6.1) N** = max max (rank(® diag(®’II, gs) Q7)) ,

f=1,....F gr
where gy is a vector with the same partition as AIl, and nonzero elements only in
part f. Suppose (B ® C)G1 and A have full column rank. If for any vector d with
the same partition as ATl,,

(6.2) rank(B® diag(®7 11, d) Q7 CT) < N**  implies  «'(d) <1,

then there exists a unique block-permutation matriz II and a unique nonsingular block-
diagonal matriz A such that ATI, = ATI,II A, where the block-transformation is
compatible with the partition of AL, and ATI,.

Proof. See the appendix. |

The result of Theorem 6.2 states that each subset of columns of A IT, satisfies
Ay = A.(5)S, where S is a unique nonsingular matrix and the permutation (-) is
defined by the unique block-permutation II. Hence, according to Definition 3.2, A is
partially unique. Note that when checking the condition of Theorem 6.2, one is free
to choose a suitable column permutation I, and partition of A Il,.

Theorem 6.2 is a generalization of Theorem 4.2. Indeed, if the column permuta-
tion II, equals I and the disjoint subsets in the partition of the columns of A are
the columns themselves, then Theorem 6.2 is just Theorem 4.2.

Condition (6.2) can be difficult to check. However, when B or C have full column
rank, they can be eliminated from the expression rank(B® diag(®71I,d) QT CT). If
both B and C have full column rank, then condition (6.2) reduces to (6.3), which is
easier to check. This is illustrated by the examples in section 7. Also, (B ® C)Gy
has full column rank if and only if G; has full column rank. This yields the following
analogue of Corollary 4.3.

COROLLARY 6.3. Let (A¥,B®,CQ) be a PARALIND solution for fixed con-
straint matrices ¥, ®, and . Let (A¥,B®,CQ) be an alternative PARALIND
solution with the same residuals. Let the columns of A be partitioned as AIl, =
[A1]...|AF], where I1, is a permutation matriz. Define the partition of A analo-
gously as ATI, = [A4]...|AF]. Suppose A, B, C, and G; have full column rank. If
for any vector d with the same partition as ATl,,

(6.3) rank(® diag(P7II,d) Q7) < N** implies  w'(d) <1,

then there exists a unique block-permutation matriz I1 and a unique nonsingular block-
diagonal matriz A such that AIl, = AIL,ITA, where the block-transformation is
compatible with the partition of AIl, and ATI,.
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Note that, in order to obtain conditions for partial uniqueness of subsets of
columns of B and C, it suffices to interchange the roles of (A, ¥), (B, ®), and (C, )
in Theorem 6.2 and Corollary 6.3.

7. Examples. In this section, we present two examples to demonstrate the con-
dition (6.3) of Corollary 6.3 for partial uniqueness. In the examples it is implicitly
assumed that A, B, and C have full column rank.

As a first example, consider again the CONFAC model with constraint matrices
(5.1). In section 5 it was established that C is essentially unique, while A and B
are not essentially unique. Next, we show that the subsets of columns in AII, =
[a1 az|ag] are partially unique. It can be verified that Gy has full column rank. We
have

1 0 0
e |1 00
(7.1) oTII, = 01 0
0 0 1
For g; = (B 0)T and go = (00 ), we obtain
(7.2)
v 0 0 0
® diag(¥ T, 1) Q" = | 28 0 |, & diag(PT I, g) QT = | 0 0 |,
0 O 0 «

where «, 5, and  are arbitrary nonzero numbers. This implies N** = 1; see (6.
Next, we check whether condition (6.3) holds. For a vector d partitioned as d
(dl d2|d3)T, we have

1).

dy 0
(7.3) ® diag(P'I,d) Q" = | 2d; 0
0 ds

If this matrix is to have rank at most 1, it follows that dyds = dods = 0. Hence,
w’(d) <1 holds and the two subsets of columns in A TII, are partially unique. Note
that this implies that as is unique up to scaling, a; and a3 are identified up to their
linear span, and the two subsets of columns may appear in a different order in A IT,.
By translating condition (6.3) to B, it follows that BII, = [by bz |bs] is also partially
unique.

The second example is taken from Bro et al. [6, section 3.2.4]. Here, we have a
CONFAC model with R =6, Ry =3, Ry = R3 = 6, and

110000
(7.4) v={001100]|, &®=0Q=I.
0000 1 1

Using Corollary 4.3, it can be verified that A is essentially unique. Lemma 4.6 with
S = {1,2} yields that B and C are not essentially unique. Next, we show that
B = [b; ba|bs by|bs bg] is partially unique. Since ® = Q it immediately follows
that C = [c1 ca|cs cqlcs cg] is also partially unique. It can be verified that Go has
full column rank. Interchanging ¥ and ® in the definition of N** in (6.1), we obtain
N** = 1. Interchanging ¥ and @ in condition (6.3) yields

d do 0 0 0 0
(7.5) Udiag(@Td)QT=| 0 0 d3 di 0 0
0 0 0 0 ds ds
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If this matrix is to have rank at most 1, it follows that at least two of the pairs
(d1,ds), (ds,ds), and (ds,ds) are all-zero. Hence, for a vector d partitioned as d =
(dl d2|d3 d4|d5 dﬁ)T, we have w'(d) S 1. This shows that B = [bl b2|b3 b4|b5 bg]
is partially unique. Bro et al. [6] show the essential uniqueness of A and partial
uniqueness of B and C using an eigendecomposition argument.

Note that our partial uniqueness condition for PARALIND can also be applied
to CP in case one of the component matrices has proportional columns. Indeed, let
A (IxR-1),B (JxR),and C (K x R) have full column rank, & = Q =I5, and
¥ = [ae1|Igr_1] (R—1x R), with « # 0. As in the last example, we can show that
the first two columns of B and C are identified up to their linear span only. This
approach can be extended to the case where AW has several groups of proportional
columns as in the example above.

8. Uniqueness for constrained Tucker3 models. As explained at the begin-
ning of section 4, studying PARALIND uniqueness is analogous to studying unique-
ness of Tucker3 models with a constrained core array (i.e., containing many zero
elements). Here, we discuss how the results in this paper may benefit the study of
uniqueness of constrained Tucker3d models, and how the latter benefits the study of
PARALIND uniqueness. Uniqueness results for Tucker3 models with a constrained
core array have been obtained by Kiers, Ten Berge, and Rocci [23] (for a family of
constrained 3x 3 x 3 cores) and Ten Berge and Smilde [41] (for a particular constrained
5 x 3 x 3 core). See also Ten Berge [43] and the references therein. Ten Berge and
Smilde [41] express the need for systematic study of uniqueness in constrained Tucker3
models, since current results resort to ad hoc arguments. This is exactly where the
uniqueness conditions in sections 4 and 6 may be useful. They represent a systematic
analysis of uniqueness that can handle not only essential uniqueness but also partial
uniqueness as defined in Definition 3.2. Any Tucker3 model with a core array with
several zero elements can be written as a PARALIND model, and our PARALIND
uniqueness conditions can be applied.

Conversely, the study of PARALIND uniqueness also benefits from the study of
uniqueness of constrained Tucker3 models. As an example, we consider the following
uniqueness result from Kiers, Ten Berge, and Rocci [23].

PROPOSITION 8.1. Let (A,B,C) be a Tucker3 solution with 3 x 3 x 3 core array
G with slices

1 0 0 0 0 d 0 0
(8.1) 0 0 b |, 01 0|, e 0
0 a O c 0 O 0 1

N o o=

If A, B, and C have full column rank an 3

and C are essentially unique.

The case a = b=c=d =e =0 and f = 1 corresponds to a CONFAC model
with
(8.2)

U

(1 + ade + bef

~—

27abcdef, then A, B,

0 0
1 0
1

100 1
T=|0100|, &=
0010

O O =
o~ O

0
0
1

o = O

1 0
., Q=10 1
00

_= o O

It can be verified that the condition (4.8) for essential uniqueness does not hold for
A or B or C. However, from Proposition 8.1 we know that all component matrices
are essentially unique. Analogously, the essential uniqueness of other CONFAC or
PARALIND models with a core array (2.4) of the form (8.1) can be obtained.
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9. Uniqueness for the block decomposition in rank-(L, L, 1) terms. Here,
we discuss uniqueness in the case where CONFAC is equal to the block decomposition
in rank-(L, L, 1) terms, introduced by De Lathauwer [12]. As explained in section 2,
we have A = [A1||AF], B = [B1||BF], C = [Cl CF]7 v =& = ILF;
and @ =Irp ® 1%. Here, Ay and By are I x L and J x L, respectively, and have
full column rank for all f. First we show, analogous to the approach of Jiang and
Sidiropoulos [22] for CP, that if C has full column rank, then essential uniqueness of
C implies partial uniqueness of A and B. Next, also analogous to [22], we present a
necessary and sufficient condition for essential uniqueness of C. We show that this
condition is identical to condition (4.4) in Theorem 4.2 (translated to C).

PROPOSITION 9.1. Let (A,B,C) be a solution for the block decomposition in
rank-(L, L, 1) terms, with C having full column rank. Suppose C is essentially unique
as defined in Definition 3.1. Then A and B are partially unique as defined in Defini-
tion 3.2, i.e., the parts Ay and By are identified up to their column spaces.

Proof. See the appendix. 0

As in Jiang and Sidiropoulos [22] we obtain the following necessary and sufficient
condition for the uniqueness of (A, B, C).

PROPOSITION 9.2. Let (A,B,C) be a solution for the block decomposition in
rank-(L, L, 1) terms, with C having full column rank. Then A and B are partially
unique and C is essentially unique if and only if

(9.1) rank(di A1BT + -+ +dr ApB}) <L implies  w(dy,...,dp) <1.

Proof. See the appendix. |

The results in this section have been obtained by following the approach of Jiang
and Sidiropoulos [22]. Since that same approach is used to derive Theorem 4.2,
it may not come as a surprise that condition (9.1) is the same as condition (4.4)
translated to C. Indeed, interchanging the roles of (A, ¥) and (C, Q) we obtain
N* = max; (rank(diag(w;‘r))) = L and

(9.2) rank(B diag(27d) AT) = rank(d; A; BT + --- +dr Ap BL).

For CP, Jiang and Sidiropoulos [22] show that their difficult-to-check necessary and
sufficient condition for uniqueness (this is (9.1) with L = 1) is implied by the condition
that Ua p) has full column rank, where U(a ) is a matrix containing products of
2 x 2 minors of A and B. This condition is much easier to check in practice. An
alternative proof of this condition is given by De Lathauwer [10], who uses a link
between CP and the problem of simultaneous matrix diagonalization. Nion and De
Lathauwer [27] present a generalization of [10] to the block decomposition in rank-
(L,L,1) terms.

Using an eigendecomposition argument, Sidiropoulos and Dimié¢ [30] prove essen-
tial uniqueness of C and partial uniqueness of the partitioned matrices A and B for
a case where C does not have full column rank. Here, we cannot use Proposition 9.2.
However, using Theorem 4.2 for C and Theorem 6.2 for A and B yields the same
uniqueness properties as in [30].

10. Discussion. In this paper, we considered the PARALIND model, which is
a restricted CP model in which the vectors forming the outer product arrays are
linearly dependent according to a prespecified pattern. An important special case of
PARALIND is CONFAC, in which the linear dependencies take the form of identical
columns. PARALIND and CONFAC can also be considered as Tucker3 models with
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a constrained core array. Moreover, some types of block decompositions are special
cases of CONFAC or PARALIND. Using the approach of Jiang and Sidiropoulos [22]
for CP uniqueness, we proved an essential uniqueness condition for one PARALIND
component matrix. As in [22], we used Kruskal’s permutation lemma [26] to obtain
our result. We extended our approach by proving a partial uniqueness condition for
one PARALIND component matrix. For this, we made use of the equivalence lemma,
for partitioned matrices proven by De Lathauwer [11].

We showed that our PARALIND uniqueness results can also be useful for the
study of uniqueness of Tucker3 models with a constrained core array. That is, we
provide tools for a systematic analysis of the latter, where so far only ad hoc arguments
are used. Conversely, some uniqueness results for constrained Tucker3 models are also
applicable to PARALIND and CONFAC. In particular, the Tucker3 uniqueness result
of Kiers, Ten Berge, and Rocci [23] shows that our PARALIND essential uniqueness
condition is not necessary.

As a special case of CONFAC, we considered the block decomposition in rank-
(L, L,1) terms. Using the approach of Jiang and Sidiropoulos [22], we showed that our
essential uniqueness condition for C also implies partial uniqueness of the partitioned
matrices A and B.

Our PARALIND uniqueness conditions require solving a nonlinear system of equa-
tions in an unknown vector d. In one particular case (see Lemma 4.4) we have obtained
an easy-to-check equivalent condition that does not involve the vector d. A subject
of future research would be to eliminate the vector d from the uniqueness conditions
for a larger variety of PARALIND models, in the spirit of studies of CP uniqueness
carried out by Jiang and Sidiropoulos [22]; De Lathauwer [10]; Stegeman, Ten Berge,
and De Lathauwer [37]; and Stegeman [36].

Our uniqueness conditions are formulated for one component matrix only and
ignore the relations between the column permutations and scalings or the column-
block permutations and scalings for different component matrices that are essentially
or partially unique. However, as mentioned in section 1, in signal processing applica-
tions one is usually interested in the uniqueness properties of one component matrix
only. Hence, our approach has immediate practical implications. Still, we conjec-
ture that uniqueness results for three component matrices together are possible to
obtain, possibly inspired by the proof of Kruskal’s [26] uniqueness condition for CP;
see Stegeman and Sidiropoulos [38].

Finally, we would like to point out that other types of uniqueness also occur in
PARALIND and CONFAC models and constrained Tucker3 models than the essential
uniqueness or the partial uniqueness defined in Definitions 3.1 and 3.2, respectively.
As an example, consider the PARALIND model with constraint matrices (5.6). Nu-
merical experiments show that alternatives for C = I are of the form

00 0
(10.1) C=

x © O %
* O %
* © O

* % O

where * denotes a nonzero element. Hence, only the last column of C appears to be
identified up to scaling (or only the first three rows are identified). This is not partial
uniqueness according to Definition 3.2. Analogous examples have been encountered
for constrained Tucker3 models; see, e.g., Ten Berge and Smilde [41]. It would re-
quire a more detailed study of CONFAC and PARALIND models to prove systematic
uniqueness conditions for this type of uniqueness.
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Appendix.

Proof of Theorem 6.2. The result follows if we show that the condition of the
equivalence lemma for partitioned matrices holds for the partitioned matrices A IT,
and ATI,. As in the proof of (i) of Proposition 3.3, the conditions of the theorem
imply that A has full column rank. This implies ki& = F, and the condition of
the equivalence lemma for partitioned matrices becomes: for any vector x such that
W'(IIFATx) < 1, we have o' (ITTATx) < w'(ITL ATx). For any x, we have

(A1) B®C)G I, (ATL,)'x=(B®C)G, I, (AIL,)"x.

Suppose w'(IITATx) = 0. Then the right-hand side of (A.1) equals the all-zero
vector. Since (B ® C) Gy II, has full column rank, it follows that (A TI,)Tx is also
all-zero. Hence, ' (IIT ATx) = 0 implies w’'(IIT ATx) = 0.

It remains to show that w’(IT'ATx) = 1 implies w'(IT'ATx) < 1. Rewriting
(A.1) in J x K matrix form, we obtain

(A.2) B® diag(®T1I, ITATx) QTCT = B® diag(¥'TI, I ATx) QT CT .

Suppose w'(IT'ATx) = 1. Then WTTL, TIT ATx is equal to WTTI, g for some vector
g¢ with the same partition as A I, and nonzero elements only in some part f. From
(A.2), it follows that

rank(B® diag(®7 11, TIZ ATx) QT CT) = rank(B® diag(®” 11, TIL ATx) QT CT)
< rank(® diag(®TTI, I ATx) Q7)

< k(® diag(PTII, gf) Q7
< e e (rank(® diag($ 7T, g7) ©7))

(A.3) = N**.

Let d = IITATx. If (A.3) implies w/(d) < 1, then the condition of the equivalence
lemma for partitioned matrices holds. The proof is complete by observing that this
is exactly condition (6.2). O

Proof of Proposition 9.1. We define

(A4) MA,B = [(Al @Bl)lL (AR @BR)]-L]-

The structured part of the IJ x K matricized block decomposition in rank-(L, L, 1)
terms equals Ma g CT; see [12]. Suppose we have an alternative decomposition
(./_X, B, (_3) and C = CII A, where II is a permutation matrix and A is a nonsingular
diagonal matrix. We have

(A.5) MapC  =MzC" =Mz gATI" C".

Since C has full column rank, it follows that Mz 5 = Ma sIIA~'. Hence, Mz 5
contains the reordered and rescaled columns of Ma . Suppose (Al ® ]_31)1 L =
A(A2®B2)1y. Then A; BT = X A, BY. Since rank(A ¢ B?) = L, the column spaces
of A; and A, are identical, and the column spaces of B; and Bs are identical. This
completes the proof. O

Proof of Proposition 9.2. We start by proving the following necessary and sufficient
condition for uniqueness:
(A.6)
Mapd=(FoG)1l; forsomeF (I x L)and G (J x L) implies w(d) <1.
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Condition (A.6) is analogous to Condition A for CP in [22]. First, we show sufficiency.
It follows from Proposition 9.1 that we only need to show essential uniqueness of C.
Suppose we have an alternative decomposition (A,B,C). From the permutation
lemma (Lemma 4.1) and C full column rank, it follows that we need to show that
w(CTx) < w(CTx) for all x with w(C?x) < 1. We have Ma g C'x = Mjz 5 CTx.
Condition (A.6) implies that M g has full column rank. Indeed, since M g does
not contain all-zero columns (the I x J matrix form of column f equals A fB}F, which
has rank L), a rank deficient matrix would imply a linear combination of at least two
columns constituting the all-zero vector, and the latter can be written as (F © G)1p,
with F all-zero. Since M s g has full column rank, w(C7Tx) = 0 implies w(CTx) = 0.
Next, suppose w(CTx) = 1. For d = CTx, condition (A.6) implies that w(d) < 1.
Therefore, the condition of the permutation lemma holds and C is essentially unique.

Next, we show necessity of (A.6). Without loss of generality, we set C = Ip
(see Ten Berge and Sidiropoulos [40]). Suppose condition (A.6) does not hold. In
particular, we assume that (A; ® B1)1; + (A2 ® B2)1;, = (F ©® G)1 (the general
proof is analogous). Then

1 o oT
(A7) MA,B Ip = [(F@G)]_L (AQ@BQ)].L (AFQBF)]_L] -1 1 oT ,
0 0 Ip_>

where 0 is the (F' — 2) x 1 all-zero vector. Hence, we obtain an alternative decom-
position that differs from (A, B, C). This completes the proof of the necessary and
sufficient condition (A.6).

It remains to show that (A.6) is equivalent to condition (9.1). This can be seen
as follows. The I x J matrix form of Mapd = (FO G)1; is di A;BY + .. +
dr Ar BL = F GT, where the rank of the latter is at most L. Since any I x J matrix
of at most rank L can be written as F GT, conditions (A.6) and (9.1) are equivalent.
This completes the proof. a
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